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Modal Characteristics of Ferromagnetic
Tridisk-Coupled Resonator

Tsukasa Nagao, Senior Member, IEEE, Zengo Tanaka, Hisashi Morishita, and Ikue Makita

Abstract— The Eigenvalue characteristics of a ferrimagnetic
tridisk-coupled (TDC) resonator are described first. A TDC
resonator is made of three AIYIG ferrite disks partially scraped
and mutually attached on a center conductor. The EM field is
treated with a consistent theory. The eigenvalue characteristics
computed with stress on the mode of »=1 are represented by the
Z1o versus Zo and Z; versus x/p relationships, where Z,¢ is
a degenerate eigenvalue, Zo is a wavenumber-eccentric radius
product, and Z; is a continuously varying eigenvalue dependent
on x/p, with a given value of Zo. Z,0 is distinguished by
either a single- or double-value region as a function of Zo. The
computed Z, versus x/pp graph belonging to the double-value
region demonstrates a contradiction to the physical reality, which
is resolved by introducing an equivalent circular resonant mode.
The equivalent resonant mode is definitely identified by a degen-
erate eigenvalue and its modal curve with large modal separation.
Experiments were carried out with various center conductors.
The experimental results support the equivalent resonant mode.
Finally, discussions are presented.

1. INTRODUCTION

HIS PAPER analytically treats an eigenvalue problem of a

ferrimagnetic TDC resonator and its equivalent EM field
representation, part of which was recently reported in [1] and
[2]. In the TDC resonator, three ferrite disks were joined as
shown in Fig. 1, and each of them was partially scraped. A
treatise of such TDC resonator 1s found in [3], which analyzed
cloverleaf planar resonators with the finite-element method,
but none of experiments and related modal representations.

The analytical method adopted in this paper includes dn
accurate transformation of derivatives between the two coor-
dinates systems (p, 4, z) and (r, ¢, 2), respectively, applied
to a constituent disk and TDC resonator. If relevant transfor-
mations obey general rules of transformation in orthogonal
curvilinear coordinates systems, the EM field equations, as it
is known, hold invariant under transformation. Thus, the EM
field confirmed in the TDC resonator satisfies the invariance
under the transformation and the boundary condition of con-
tinuity. Contrastively speaking, the EM field shown in [2] is
considered rather indefinite, since it lacks the invariance of
form.

The computed eigenvalue characteristics are represented
in two diagrams of the Z; versus Zy and Z; versus x/p
relationships. For the Z;g versus Zy diagram, there are single-
and double-value regions, and for the Z; versus x/u diagram,
it is found to contradict physical reality in that a Z; versus
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Fig. 1. Geometrical configuration of the TDC resonator and its disk equiv-
alent and location of three disks and the connecting boundaries.

k/p graph belonging to the double-value region retains two
degenerate eigenvalues. In connection with the double-value
region, the wave behaviors possibly taking place inside the
resonator are phenomenologically examined using a wave
passage circumgyrating around three disks.

An equivalent circular cylindrical EM field representation
is contrived to retain a given degenerate eigenvalue. The
equivalent EM field representation aims to fix a circular disk of
radius 7, and, furthermore, to confirm the equivalent resonant
mode that displays unique modal separation.

The modal separations in the TDC resonator mode is
described in comparison with that of a disk resonator. It is
taken into account by the multiplier By, which is applied to
/1 in calculating of resonant modal curves.

Experiments of TDC resonators with various center con-
ductors were carried out. Modal behaviors in measured mode
charts are found generally to agree with the above-noted
equivalent resonant mode. Further discussions are given in
relation to the fringing field effect.

II. FIELD ANALYSIS OF TDC RESONATOR

A. Preliminary Notes on Theoretical Treatment

To avoid a repetition of the mathematical procedure that was
stated in [2], the present way of calculation is briefly noted
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as follows. Utilizing the relevant transformation relations be-
tween the two coordinates systems that are given in Appendix
A ((A8) and (A9)), one can prove that the EM field given in
the system (p, 6, z) in [2, (7)~(9)] is invariantly transformed
into that in the system (7, ¢, z). For convenience, several
radial wavenumber-radius products such as

w = kp, Z =kr, Zy = kro, Zy =ka, (1)
are used hereafter. By making use of the transformation
relations and the addition theorem of the Bessel functions [5],
the EM field is described in the circular harmonic expansion
as follows.

Ez(Z,8) = a0 Josm(Z)Im(Zo)e P H™, (2)

u+m(Z)

1 v+m
ZECLVZli( —; )J

1
Ju—{-m

(z )] Jm(ZO)e“j(V+m)¢+j<I’u’ 3)

o= —j— ZG’JZ[ vim(Z)

_xtm)

st J,,+m(z>]Jm(zo)
. 6_1(V+m)¢+jq>1/’ (4)

o0

where ). and Y , respectively, denote > and
Zf’:_oo, and J/ denotes the derivative of the Bessel function
of the first kind J;. Thus, we can obtain the EM field of
the first disk positioned at @1 (¢ = 0). Further if we take
¢ = ¢ — 2w /3 for the second disk in place of ¢ in (2),
(3), and (4) and ¢" = ¢ — 4w/3 for the third disk, we can
obtain the respective EM fields for the disks positioned at Qo

(¢ = 2x/3) and Q3 (¢ = 47/3).

B. Continuity Conditions of Transverse EM Field Components

A TDC resonator is actually a juncture of three circular
disks, and each disk contacts with others at ¢ = x/3, m, and
57 /3 as indicated by Ty, T5, and T3 in Fig. 1. When the
juncture makes a unique resonator, then the EM field satisfies
the continuity condition at each interconnecting boundary. It
gives at Ty, for instance,

Ea(7, §) = B (20, -5),

perty (71, 5 ) = neata (%1, —5 ), )

where suffices 1 and 2 denote the field components for the

disk positioned at @1 and Q. Similar relations also hold at
Ty and T3. o] = ftez = [he3 1S assumed in calculation.

Algebraic manipulation of (5), after substitution of (2)

and (4) and elimination of a,, gives the same complex

characteristic equation for each of three boundaries Ty, T3,

4.0
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Fig. 2. The Z1¢ versus Zp diagram and the relationship of Z10 and Zag.
m and m’ in computation of (8) are retained to 12. Inset is geometrical
configuration of a pair disk in the TDC resonator.

and T3 with respect to every v (—oo < v < +v) as follows.

/ K (v+m)
I:Z{Jr/—i-m(zl)— ; 7

m
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(6)

In order to obtain a physically significant value from this
characteristic equation, the real part of (6) should be retained
under the phase condition

¢, =r—9,. )
We deduce from (6), after substitution of (7),

k(v +m)
EZ[ vem(Z1) = [V A

m m'

J,,_J,_m/(Zl)Jm(Zo)Jml(Zo) CcoSs {(m - m')
)3 -,} =0,

Jt/—l—m(Zl)

m, m' =0, £1, £2,--- (8)

Choice of ®, = 0 is needed.

C. Eigenvalue Characteristics of TDC Resonator

Computation of (8) is made, at first, to get a degenerate
eigenvalue Zio (= [ka]) with x/u = 0, and next to get
an eigenvalue Z; (= ka) as a function of x/p, regarding
v = 1 and 2 in addition. Computed results of two kinds of
the eigenvalues are shown in Figs. 2 and 3. To explain the
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Fig. 3. The Zy versus x/u diagram. m and m’ in computation of (8) are

retained to 12. Notations a, b, and others in parentheses are referred to those
in Fig. 2.

characteristics of Z;g, we put marks from a to g on these
diagrams. ThF Zyo versus Zgp diagram demonstrates that as
Zp and, of course, the radius of eccentricity r¢ increases from
zero, Zyg increases slightly from 1.84 (a), and after it reaches
the maximum Z;5 = 2.12 (b) at Zy = 1.06, it decreases to
Z10 = 1.84 (¢) at Zy = 1.84; beyond (¢), it occurs to have
double values, for instance, (c¢) and (d) or (e) and (f), denoted
by 1U and 1L, respectively. The Zoo versus Zy diagram for
v = 2 is additionally drawn in Fig. 2. It totally resembles that
of v = 1.

The Z; versus x/p diagram with a variety of Zpp is
summarized as follows: 1) The graph marked by (a) has the
same variation in x/y as the resonant modal curve of a disk
resonator since the v = +1 curve runs from the degenerate
point where Z; = 1.84 and x/p = 0 to the cutoff point where
Z1 = 0 and x/pe = 1.0; 2) A change from (a) to (b) is an
increase of Zio from 1.84 to 2.12. The graph marked by (b)
is almost similar to that of (a). but the pair of the graphs are
more separated, with the cutoff point moved to «x/u = 0.74
from 1.0. Another change to (c) is a decrease of Zig to 1.84,
with larger separation, and simultaneously it occurs to have an
extra of Z19 = 0 (d), with the cutoff point moved from «/p =
0.74 to 0; 3) In the double-value region, a graph is traced in
a line passing two points, (¢) and (f), for instance, with its
sign changed from minus to plus at (e) and vice versa at (f). If
Zy increases still further, they finally join at (g) where Z1y =
1.06 and Zp = 2.12 and the TDC resonator collapses into the
constituent disk resonators.

The wave behaviors possibly taking place in the TDC
resonator can be examined phenomenologically by using wave

(1) in the vicinity of (b) (2) in the vicinity of (b)

(4) in the vicinity of (c)

(3) in the vicinity of (c)

Fig. 4. Illustration of wave passages circumgyrating in the positive direction
in a pair disk and a TDC resonator in the vicinity of (b) and (c).

passages circumgyrating around the three disks, with regard
to (b) and (c) on the Z19 versus Zy diagram. Assume that
the wave passage in the TDC resonator may be decomposed
into such elemental wave passages in each pair of the disks,
as shown in Fig. 4. The geometry of the pair disk is shown
inset in Fig. 2. In the case of (b) with Zy = 1.06 where the
center O situates between O’ and S,, two waves, A and C,
respectively, pass through between S; and O and between O
and O’ in the same direction as shown in Fig. 4(a). When they
are transferred to around O in the resonator, they counteract
each other to be void of them in the central part, as shown
in Fig. 4(b). In the case of (¢c) with Zg = Zg = 1.84
where O coincides with S;, the waves A, B, and C passing
between O and O’ in the pair disk produce the major wave A
circumgyrating and the minor wave D inversely rotating in the
resonator, as shown in Fig. 4(c) and (d). Thus, two degenerate
points of (c) and (d), and (e) and (f) occur as well.

III. EQUIVALENT CIRCULAR CYLINDRICAL
WAVE REPRESENTATION OF THE EM FIELD

A. Synthesis of Equivalent Circular Cylindrical EM Field

It should be noted that any of the Z; versus x/u graphs
that have been shown in Fig. 3 are not precisely of circular
cylindrical waves, since the EM field given by (2)—(4) is still
in the form of the expanded harmonic wave; besides, some of
the graphs retain two degenerate eigenvalues. As far as a fer-
rimagnetic resonator is concerned, one degenerate eigenvalue
definitely determines one unique resonant mode. It is necessary
to derive a circular cylindrical wave expression that consists of
each one of the above-noted degenerate eigenvalues. Deriva-
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tion of the circular EM field can be made by synthesis from
the constituent EM fields as noted in [2]. We assume that
the TDC resonator has an equivalent circular disk of radius
re and the corresponding anisotropic splitting factor (k/u)’,
and subsequently the EM field effectively satisfy the boundary
condition of the magnetic wall. The EM field is obtained,
by summation, from the constituent EM fields according to
three cases: zero-phase, positive-phase, and negative-phase
junctures. Summarizing thus-synthesized EM fields, we can
describe the EM fields of all modes of n as follows.

B, =Y anda(Z)e™, ©)

n

H, = %Z (792 = (st T )] e, 10)

Hy = —jC—tZan [J;L(Z) - (n/u)’—Z—Jn(Z)]e‘J"¢, a1

Now, we have for the magnetic wall condition, H, ¢ = 0, from
(11

1
I (Z2) F (H/N)IZ—QJMZz) =0, (12)

where

Z2 = kTe,

(k/wm) = Bok/p, (13)

and By is a multiplier.

B. Adjustment of Resonant Modal Curves with Disk Equivalent

The EM field given by (9)—(11) resumes the circular cylin-
drical wave expression, but (12) does not yet retain any
of the above-described degenerate eigenvalues. To meet the
requirement that the EM field is to consist with a given value
of Zip and to sustain a presupposed gradient angle of a 7
versus &/ p graph, some prerequisites are necessary to describe
lowering of a degenerate eigenvalue and adjustment of its
modal gradient angle. As we know, the degenerate eigenvalue
computed from (12) is none other than the one of the disk
resonator for » = 1, and we have for this mode

Zy = kre = 1.84. (14)

The aim is that the equivalent resonant modal curves with a
given degenerate cigenvalue Zig % 1.84 can be reproduced
from those of the disk resonator by adjusting r. and B, in
(13).

Equivalent radius for given degenerate eigenvalue: For an
instance of Z1p < 1.84, as the radius r. of the disk equivalent
may be larger, so it is written as

re = a(l + A), (15)

where A is a radius increment. Decreasing of 71, from 1.84
may be ascribed to such increment. After substitution of (15)
into (14), one can obtain

kr. = [ka](14+ A) = 1.84.
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Fig. 5. Relationship of initial gradient angles « and o' against Zy¢ and
relationship of Bo against Z;0. Notations (a)-(g) correspond to those in
Figs. 2 and 3.

Thus, [ka] of the present interest is evaluated as

ZlO = [ka] = 184/(]. -+ A), (16)
and the radius r. becomes
re = 1.84 a/[ka]. (17)

Consequently, we can obtain for an arbitrary value of ka with
the degenerate eigenvalue [ka]

Zy = kre = 1.84 ka/[ka]. (18)

Modal separation and multiplier: A pair curve of a reso-
nant mode in a disk resonator is intrinsically separated under
the biasing magnetic field. This separation is described by an
initial gradient angle oy of a tangential straight line passing
a degenerate point Z1 as given in Appendix C. The initial
angle for the mode of n = 1 is given by

oy = cot™! (Zlo - 1/210). (19)

The angle oy computed from (19) and the theoretical angle
o} obtained from the curves of Fig. 3 are shown in Fig. 5. o
simply varies from 38° to 180° if Z1o decreases from 1.84
to zero, while o varies from 38° to 120°. ] is equal to a3
at Z10 = 0.97.

The ratio of gradient angles is preferred to in definition of
By

B() = o/l/al, (20)

and it is shown in Fig. 5. By is more than unity in the range
above Z19 = 0.97 and less below it. By is related to the
cutoff value of (x/p)., as given by

By = ]-/(K'/N‘)c-

Thus, the shifting of the cutoff value on the axis of &/u
is related to the modal separation. By is also understood to
represent an enhancement of x/p due to gaining more phase
angle than 27 by circumgyrating the peripheral passage.

ey
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Fig. 6. Equivalent resonant modal curves. Part of the Z10 versus Zp diagram
in the left side is transferred from Fig. 2.

Graphing of resonant modal curves: Computation of (12)
is made taking into account the [ka] and By relation shown
in Fig. 5. The computed results of the resonant modal curves
are shown in Fig. 6, where (a), (b), and others correspond to
those in Figs. 2 and 3. The resonant modal curves obviously
get more separated if their value of Z, varies from (a) through
(b) to (c) and the cutoff point of (x/u1). moves down and back
from x/p = 1.0 to 0.64. In contrast, the separation for 1L
becomes smaller than for 1U and the curves of 1L have no
cutoff, running almost straight on a level with its degenerate
point. To ascertain the above graphing, we need some evidence
to rely on.

IV. EXPERIMENTS AND DISCUSSIONS

The TDC resonator used in experiment had such specifica-
tions that the radius of a disk was ¢ = 10 mm, its thickness was
2.5 mm, scraped depth was 1.0 mm, saturation magnetization
of AIYIG ferrite 47 M, = 950 Gauss, and its permittivity
was €. = 14.5. Since the radius rq was 10.4 mm, which was
less than 11.55 mm for a resonator with nothing scraped, the
resonator of the present concern belonged to the double-value
region near Zy — 1.84. Resonators having a narrow stripline
for light coupling and a wide stripline for tight coupling. with
various center conductors, were experimented.

A lightly coupled resonator was made of a center conductor
of type 1 and coupled by use of the narrow stripline of width
W = 4 mm. The resonant frequency curves measured in the
above resonance were found to be the same narrowly separated
pair as seen in a mode chart in [2. Fig. 7]. It is considered to
be a pair of 1L.

In the tightly coupled cases, the resonators, at first, had
only common circular center conductors (type 2), so that three
ferrite disks partially protruded out of the center conductor,
and later had such protruded portions backed with conductors
besides the circular center parts (type 3). The type-2 conductor

(below-resonance)

40F o

Frequency (GHz)

° (above-resonance)

0 1 I 1 |
0 0.5 1.0 1.5 2.0 2.5

Biasing magnetic field (kG)

Fig. 7. Measured mode chart of tightly coupled resonator with a type-2
center conductor of diameter 2r, = 33 mm. Coupled stripline width W~ =
11.2 mm.

had the center conductor of 2r, = 33 mm and coupled
striplines of width W = 11.2 mm. An obtained mode chart
is shown in Fig. 7. Resonant frequency curves of n = 1
were distinguished by two pairs of 1U and 1L in the above
and below resonance. In the above resonance, the 1L curves
showed the feature to lie between two curves of 1U in the
biasing magnetic field near 1.5-kilo Gauss and a tendency
to depart from 1U as the magnetic field increased. This
observation corresponds to the relationships of 1U and 1L,
which are respectively marked by (e) and (f) in Fig. 6.

Further experiments were carried out using larger center
conductors of types 2 and 3. One typical mode chart measured
with a type-3 conductor is shown in Fig. 8. Two pairs of res-
onant frequency curves of 1U and 1L are narrowly separated
and decisively departed from each other.

A resonant frequency at a degenerate point, named degen-
erate resonant frequency (DRF), is estimated by extrapolation
at the extremity of biasing magnetic field. DRF’s of 1U and
1L in the above and below resonance for all coupling cases
and conductor types are plotted in Fig. 9. Those of the lightly
coupled case are plotted at 2r. = 19 mm since the type-1
conductor has the inscribed circle of r. = 9.5 mm, while
those with the type-2 and 3 conductors for such as shown
in Fig. 7 are plotted at 2r. = 33 mm, though the DRF’s of



NAGAO et al.: MODAL CHARACTERISTICS OF FERROMAGNETIC TRIDISK-COUPLED RESONATOR

191

TABLE I
THEORETICAL DIAMETERS OF DiSK EQUIVALENTS
No. 7 i its:
0 [ka]lU [ka]lL Mean Value | Diameter er, (units: mm)
for a = 20; for a = 18
1 j1.90) 1.77 0.13 0.95 38.7 3k.9
2 |2.00| 1.63 0.37 1.00 36.8 33.1
3 12.50] 1.33 0.75 1.04 35.5 31.8
+ for type 1 conductors
4.0 |- o for t{/ge 2 conductors Ty‘;fT lgonductor
A for type 3 conductors (thin line)
3.0 } Type 2 conductor
(below-resonance) _ I W o (solid line)
| oo 2
o '] I ° %2 .0
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8 bo ° » ° o° °o° & circle of type 1
) ©o o © o0 1 g2 ao conductor
- | ) - pIp. -] 1Lt Type 3 conductor
o o 9880 0%0000° a_t thick broken)
o oo 0P ooow°°° 10 k (
L oo°°° o 2U J. (Above-resonance region)
2.0 = °0 0.00 °°° [+ 1 "
°:°° gocgoo"" o291 10 20 30 40
0y © 0%0° Diameter 2re (mm)
e
°°° d,°°ggw°"° ?.Zgow°°° 1U Fig. 9. Relationship of degenerate resonant frequencies of 1U" and 1L
B ° °° against disk diameters of various center conductors in the above- and
o ] below-resonance regions.
o oo"’g° oooao°0°°°°°gg® £
o 0000 1L .
1o ogO°° 00°° we find that the experimental diameter 2r. = 33 mm is
ol o 0
‘;oo o¢,o'~"° shorter than any one for ¢ = 20 mm. If we assume a = 18
o°° mm, we have 2r, = 33.1 mm for Zy = 2.00, which agrees
°°o° with the experimental diameter noted above.
i o (above-resonance) Qualitative reasoning about the diametric discrepancy is
° sought from the view point of the fringing field effect [6]-[8].
It is actually unavoidable that when a uniform biasing mag-
0 L : . L netic field is applied, the internal magnetic field is not wholly
0 0.5 1.0 1.5 2.0 2.5 uniform in the ferrite disk and becomes oblique in the fringe

Biasing magnetic field (kG)

Fig. 8. Measured mode chart of tightly coupled resonator with a type-3
center conductor of 2r. = 36.5 mm. Coupled stripline width: W = 11.2
mm.

the type-2 conductor are slightly higher. When the conductor
diameter exceeds 27, = 35 mm, DRF’s of 1U and 1L for such
performance as shown in Fig. 8 are found almost unchanged.

Thus, the existence of the double resonant modes of 1U and
1L as shown in Figs. 7-9 verifies the theoretical prediction
of the two modes. Regarding the double resonant modes of
1U and 1L, there is an adequate center conductor radius to
consolidate them. A disk equivalent to this end is calculated
from the mean value of two degenerate eigenvalues for 1U
and 1L. Using (17), one can calculate diameters for some disk
equivalents as follows.

Comparing the diameters experimentally examined as
shown in Fig. 9 and those calculated as given in Table I,

of the disk. Accordingly, inhomogeneity of dispersive and
dissipative components of the tensor magnetic permeability is
brought about in the fringe in the above and below resonance
regions [8], [9]. The resonance condition of the magnetic
wall and the loss factor may be seriously affected. Thus, the
boundary surface is physically modified to move back inside
the disk, so that the diameter and the scraped portion are in
effect reduced. The diameter reduction from a = 20 to 18
mm results in increasing Z, and correspondingly brings two
degenerate eigenvalues closer in the Zqy versus Z; diagram.
Thus, the calculated diameter of the disk equivalent supports
the above reasoning.

The dispersive and dissipative components inhomoge-
neously emerging in the fringe of the disk not only shift
the boundary surface of the magnetic wall, but also affect
the Q factor of the resonator and its impedance matching,
so that measurement of resonant frequency is seriously
influenced. Missing resonant frequencies seen in a mode
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chart are considered mostly caused by low SN ratio, due to
the dissipation in the fringe in addition to the inhomogeneous
dispersive component.

V. CONCLUSION

The boundary value problem of the TDC resonator and the
eigenvalue characteristics are treated with stress on the lowest-
order mode. As for the Zig versus Zy diagram, there are
single- and double-value regions, part of which is phenomeno-
logically examined using wave passages circumgyrating in the
three ferrite disks in the resonator. As for the Z; versus x/u
diagram, to dissolve the discrepancy between the theoretically
computed curves and related resonant frequency curves drawn
in the mode chart, an equivalent circular resonant mode is
contrived that is definitely to retain one degenerate eigenvalue.
The TDC resonators with various center conductors were
experimented and adequate center conductors were found
necessary to consolidate the equivalent resonant mode.

It is finally noted that the resonant mode in the TDC
resonator has potentiality to display larger modal separation
and an enhancement effect of the anisotropic splitting factor
due to such TDC structure. Application of a multidisk-coupled
structure has been undertaken to extend performances of such
nonreciprocal devices as isolator and circulator in VHF and
EHF and to further realize such devices in the near infrared
region.

VI. APPENDIX A
TRANSFORMATION OF DERIVATIVESO/ 0w AND 0 /w 0

Transformation of the derivatives can be achieved according
to the theory of differential geometry. One can assume the
functions w = fi1(Z, ¢), 8 = fo(Z, $), Z = fa(w, ).
and ¢ = fu(w, 8) along the constant lines of w, 8, Z,
and ¢, referring to [2, (1)—(6)]. The issue can be restricted
within two infinitesimal coordinates systems (dw, wdf) and
(dZ, Zd¢), which are mutually dependent on the direction
cosines (A1, p1) and (Mg, u2) between the two coordinates
systems. They are given by

w1972 _ 1w 1987 1 wde
Y how g0z’ M T hwoe g 077
v 1206 _ 1 ow _120¢ 1 wdh
2T hy ow 92206 M T hywdd T go 204
(A1)

hi1. ho. g1. and g» in (Al) are the scale factors given by

= (22 (22
YV \bw woh )’

B 286\* [ Z9$\?
h2_qut< 6w> +<w89) ’

oo () ) o

and they must satisfy the relations

githi =1, goho =1, Apg + p1Ap = 0. (A3)

Now, let f be an arbitrary function of w, 8, Z, and ¢, and
the derivatives are calculated as

of of of
g~ gz thadagns,
of of af
wop Mgz Themgag. (A4)

All terms in the right side in (A1) and (A2) are calculated from
the above-given functions fi, f2, f3, and f4. One can obtain

o _ ey 0T w07

9z YT o az T VT Lae
o 204 woh 284
7 MY =T Zag - VT g AV

Substituting (A5) into (A1) and (A2), one finds that as for
the scale factors h; = hy = 1 and g1 = g2 = 1 and for the
direction cosines

A1 = cos, Ag = sin1,
p1 = —sinp, p2 = cosyp.  (A6)
Consequently (A4) is rewritten as
of __of af
i COS¢8 + Sln¢Z8¢>
af of of
wdd = smqﬁ —|—coswza¢. (AT)

Transformation of magnetic field components H, and Hy
into H, and H, is made according to the relation

H, =cosyH, —sinyHy, Hg = sinH, + cosyH,.

(A8)

VII. APPENDIX B
MODAL SEPARATION OF THE 7i-TH
ORDER MODE AT THE DEGENERATE POINT

Resonant modal curves of the n-th order mode are computed
from the characteristic equation
T Zn) F 2T (Z,) = 0.

07,0 (BI)

The resonant modal curves drawn in the Z,, versus x/u
diagram is approximated by a tangential straight line passing
the degenerate point Z,, with the gradient angle «,,. The
degenerate point is given by the lowest root of

I (Zno) = 0. (B2)

Substituting into (B1) the approximate linear formulae of the
Bessel function of the n-th order and its derivative which are
given by Jn(Z,) = Jn(Zno) + Jrll(ZnO)AZn and J;L(Zn) =
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I Zno) + T (Zn0)AZ, regarding Z, = Z,9 + AZ,, and
taking the linear terms in the Taylor expansions of (B1), one
can obtain for the gradient of the tangential line

n
dZ,/d(k/p) = — . B3
From (B3) one can obtain the gradient angle «,
n
oy, = tan™? : B4
ey
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