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Modal Characteristics of Ferromagnetic

Tridisk-Coupled Resonator
Tsukasa Nagao, Senior Member, IEEE, Zengo Tanaka, Hisashi Morishita, and Ikue Makita

Abstract— The Elgenvalne characteristics of a ferromagnetic
tridisk-coupled (TDC) resonator are described first. A TDC
~es;nat~r is made of three AIYIG ferrite dkks partially scraped

and mutually attached on a center conductor. The EM field is
treated with a consistent theory. The eigenvdue characteristics
computed with stress on the mode of v= 1 are represented by the
210 versus 20 and 21 versus K/p relationships, where Z1O is

a degenerate eigenvalue, ZO is a wavenumber-eccentric radius
product, and 21 is a continuously varying eigenvalue dependent

on Klp, with a given value of ZO. Z1O is distinguished by

either a single- or double-value region as a function of ZO. The
computed 21 versus KJp graph belonging to the double-value
region demonstrates a contradiction to the physical reality, which
is resolved by introducing an equivalent circular resonant mode.

The equivalent resonant mode is definitely identified by a degen-
erate eigenvalue and its modal curve with large modal separation.
Experiments were carried out with various center conductors.

The experimental results support the equivalent resonant mode.

Finally, discussions are presented.

I. INTRODUCTION

T HIS PAPER analytically treats an eigenvalue problem of a

ferromagnetic TDC resonator and its equivalent EM field

representation, part of which was recently reported in [1] and

[2]. In the TDC resonator, three ferrite disks were joined as

shown in Fig. 1, and each of them was partially scraped. A

treatise of such TDC resonator is found in [3], which analyzed

cloverleaf planar resonators with the finite-element method,

but none of experiments and related modal representations.

The analytical method adopted in this paper includes an

accurate transformation of derivatives between the two coor-

dinates systems (p, 19, z) and (r, #, z), respectively, applied

to a constituent disk and TDC resonator. If relevant transfor-

mations obey general rules of transformation in orthogonal

curvilinear coordinates systems, the EM field equations, as it

is known, hold invariant under transformation. Thus, the EM

field confirmed in the TDC resonator satisfies the invariance

under the transformation and the boundary condition of con-

tinuity. Contrastively speaking, the EM field shown in [2] is

considered rather indefinite, since it lacks the invariance of

form.

The computed eigenvalue characteristics are represented

in two diagrams of the Zlo versus 20 and 21 versus ti/~

relationships. For the 210 versus Z. diagram, there are single-

and double-value regions, and for the 21 versus K/K diagram,

it is found to contradict physical reality in that a 21 versus
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Fig. 1. Geometrical configuration of the TDC resonator and its disk equiv-
alent and location af three disks and the connecting boundaries.

K/p graph belonging to the double-value region retains two

degenerate eigenvalues. In connection with the double-value

region, the wave behaviors possibly taking place inside the

resonator are phenomenologically examined using a wave

passage circumgyrating around three disks.

An equivalent circular cylindrical EM field representation

is contrived to retain a given degenerate eigenvalue. The

equivalent EM field representation aims to fix a circular disk of

radius r-. and, furthermore, to confirm the equivalent resonant

mode that displays unique modal separation.

The modal separations in the TDC resonator mode is

described in comparison with that of a disk resonator, It is

taken into account by the multiplier l?o, which is applied to

K/LL in calculating of resonant modal curves.
Experiments of TDC resonators with various center con-

ductors were carried out. Modal behaviors in measured mode

charts are found generally to agree with the above-noted

equivalent resonant mode. Further discussions are given in

relation to the fringing field effect.

II. FIELD ANALYSIS OF TDC l&SONATOR

A. Preliminary Notes on Theoretical Treatment

To avoid a repetition of the mathematical procedure that was

stated in [2], the present way of calculation is briefly noted
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as follows. Utilizing the relevant transformation relations be-

tween the two coordinates systems that are given in Appendix

A ((A8) and (A9)), one can prove that the EM field given in

the system (p, 0, z) in [2, (7)–(9)] is invariantly transformed

into that in the system (T-, ~, z). For convenience, several

radial wavenumber-radius products such as

w = kp, Z = kr, Z. = ho, z, = km, (1)

are used hereafter. By making use of the transformation

relations and the addition theorem of the Bessel functions [5],

the EM field is described in the circular harmonic expansion

as follows.

o
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where xv and Em, respectively, denote ~~=.m and

zY=_m, and J: denotes the derivative of the Bessel function
of the first kind J~. Thus, we can obtain the EM field of

the first disk positioned at Q1 (@ = O). Further if we take

#’ = @ – 2~/3 for the second disk in place of # in (2),
(3), and (4) and @“ = @– 47r/3 for the third disk, we can

obtain the respective EM fields for the disks positioned at Q2

(@ = 2~/3) and Q3 (@ = 4m/3).

B. Continuity Conditions of Transverse EM Field Components

A TDC resonator is actually a juncture of three circular

disks, and each disk contacts with others at @= 7r/3, T, and

57r/3 as indicated by Tl, TZ and T3 in Fig. 1. When the

juncture makes a unique resonator, then the EM field satisfies

the continuity condition at each interconnecting boundary. It

gives at T1, for instance,

“(z’ 3 ‘E4Z1-3
()V.lH1 -Z1,~ ‘~e’H’(z’-3 ‘5)

where suffices 1 and 2 denote the field components for the

disk positioned at Q1 and Q2. Similar relations also hold at

T2 and T3. p.l = p.z = &.3 is assumed in calculation.

Algebraic manipulation of (5), after substitution of (2)

and (4) and elimination of au, gives the same complex

characteristic equation for each of three boundaries T1, T’,

0.0

Z20 v =2

b
V=l

ZI o

a

—.

/
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Fig.2. The ZIO versus ZO diagram and the relationship of ZIO and 220.
m and m‘ in computation of (8) are retained to 12. Inset is geometrical

configuration of a pair disk in the TDC resonator.

and T3 with respect to every v (– cc < v < +v) as follows.

[{x J~+~(zl) - ;(v;,m)J.+~(zl)}J~(zo)
m
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(6)

J Lm’ J

In order to obtain a physically significant value from this

characteristic equation, the real part of (6) should be retained

under the phase condition

@;=?’ r-@v. (7)

We deduce from (6), after substitution of (7),

~x ~:+m(zd- ;(”;ln)Jv+m(zd]

m mr

. JV+m, (Z1)Jm(Zo)Jm (.ZO) COS {(m – m’)

. 7r/3 – 0.} = o,

m, m’ = O, +1, ti2, . . . (8)

Choice of ~. = O is needed.

C. Eigenvalue Characteristics of TDC Resonator

Computation of (8) is made, at first, to get a degenerate

eigenvalue Z1O (= [ka] ) with K/K = O, and next to get

an eigenvalue Zl (= ka) as a function of K/p, regarding
.V = 1 and 2 in addition. Computed results of two kinds of

the eigenvalues are shown in Figs. 2 and 3. To explain the
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Fig. 3. The 21 versus R/# diagram. m and m’ in computation of (8) are
retained to 12. Notations a, b, and others in parentheses are referred to those

in Fig. 2.

characteristics of 210, we put marks from a to g on these

diagrams. Th~ ZIO versus 20 diagram demonstrates that as

20 and, of course, the radius of eccentricity r. increases from

zero, 210 increases slightly from 1.84 (a), and after it reaches

the maximum ZIO = 2.12 (b) at 20 = 1.06, it decreases to

ZIO = 1.84 (c) at 20 = 1.84; beyond (c), it occurs to have

double values, for instance, (c) and (d) or (e) and (f), denoted

by lU and IL, respectively. The 220 versus 20 diagram for
v = 2 is additionally drawn in Fig. 2. It totally resembles that

Ofv=l.

The 21 versus K/p diagram with a variety of 210 is

summarized as follows: 1) The graph marked by (a) has the

same variation in K/p as the resonant modal curve of a disk

resonator since the u = + 1 curve runs from the degenerate

point where 21 = 1.84 and K/p = O to the cutoff point where

21 = O and K,/~L = 1.0; 2) A change from (a) to (b) is an

increase of Zlo from 1.84 to 2.12. The graph marked by (b)

is almost similar to that of (a). but the pair of the graphs are
more separated, with the cutoff point moved to K/~L = 0.74

from 1.0. Another change to (c) is a decrease of Zlo to 1.84,

with larger separation, and simultaneously it occurs to have an

extra of ZIO = O (d), with the cutoff point moved from K/~ =

0.74 to O; 3) In the double-value region, a graph is traced in

a line passing two points, (e) and (f), for instance, with its

sign changed from minus to plus at (e) and vice versa at (f). If

20 increases still further, they finally join at (g) where ZIO =

1.06 and 20 = 2.12 and the TDC resonator collapses into the

constituent disk resonators.

The wave behaviors possibly taking place in the TDC

resonator can be examined phenomenologically by using wave

(2) in the vicinity of (b)
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Fig. 4. Illustration of wave passages circumgyrating in the positive direction
in a pair disk and a TDC resonator in the vicinity of (b) and (c).

passages circumgyrating around the three disks, with regard

to (b) and (c) on the ZIO versus 20 diagram. Assume that

the wave passage in the TDC resonator may be decomposed

into such elemental wave passages in each pair of the disks,

as shown in Fig, 4. The geometry of the pair disk is shown

inset in Fig. 2. In the case of (b) with 20 = 1.06 where the

center O situates between O’ and S2, two waves, A and C,

respectively, pass through between S2 and O and between O

and O! in the same direction as shown in Fig. 4(a). When they

are transferred to around O in the resonator, they counteract

each other to be void of them in the central part, as shown

in Fig. 4(b). In the case of (c) with ZIO = 20 = 1.84

where O coincides with S2, the waves A, B, and C passing

between O and O’ in the pair disk produce the major wave A

circumgyrating and the minor wave D inversely rotating in the

resonator, as shown in Fig. 4(c) and (d). Thus, two degenerate

points of (c) and (d), and (e) and (F) occur as well.

III. EQUIVALENT CIRCULAR CYLINDRICAL

WAVE REPRESENTATIONOF THE EM FIELD

A. Synthesis of Equivalent Circular Cylindrical EM Field

It should be noted that any of the ZI versus K,/p graphs

that have been shown in Fig, 3 are not precisely of circular

cylindrical waves, since the EM field given by (2)–(4) is still

in the form of the expanded harmonic wave; besides, some of

the graphs retain two degenerate eigenvalues. As far as a fer-

romagnetic resonator is concerned, one degenerate eigenvalue

definitely determines one unique resonant mode. It is necessary

to derive a circular cylindrical wave expression that consists of

each one of the above-noted degenerate eigenvalues. Deriva-
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tion of the circular EM field can be made by synthesis from

the constituent EM fields as noted in [2]. We assume that

the TDC resonator has an equivalent circular disk of radius

T. and the corresponding anisotropic splitting factor (K/~)’,

and subsequently the EM field effectively satisfy the boundary

condition of the magnetic wall. The EM field is obtained,

by summation, from the constituent EM fields according to

three cases: zero-phase, positive-phase, and negative-phase

junctures, Summarizing thus-synthesized EM fields, we can

describe the EM fields of all modes of n as follows.

13Z = ~an,_7n(Z)e”~”4, (9)
n

Now, we have for the magnetic wall condition, 1-1. = O, from

(11)

J~(z~) ~ (K/K) ’+ J1(z2) = o, (12)

where

22 = h-e, (f$/#)’ = B@/&, (13)

and B. is a multiplier.

B. Adjustment of Resonant Modal Curves with Disk Equivalent

The EM field given by (9)–(11) resumes the circular cylin-

drical wave expression, but (12) does not yet retain any

of the above-described degenerate eigenvalues. To meet the

requirement that the EM field is to consist with a given value

of ZIO and to sustain a presupposed gradient angle of a 21

versus K/# graph, some prerequisites are necessary to describe

lowering of a degenerate eigenvalue and adjustment of its

modal gradient angle. As we know, the degenerate eigenvalue

computed from (12) is none other than the one of the disk

resonator for v = 1, and we have for this mode

22 = kr. = 1.84. (14)

The aim is that the equivalent resonant modal curves with a

given degenerate eigenvalue 210 $ 1.84 can be reproduced

from those of the disk resonator by adjusting I-e and BO in

(13).

Equivalent radius for given degenerate eigenvalue: For an

instance of ZIO < 1.84, as the radius r. of the disk equivalent

may be larger, so it is written as

r-e = a(l +A), (15)

where A is a radius increment. Decreasing of ZIO from 1.84

may be ascribed to such increment. After substitution of (15)

into (14), one can obtain

kr. = [ka](l + A) = 1.84.
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Fig. 5. Relationship of initial gradient angles a and a’ against 210 and
relationship of l?. against Z1 o. Notations (a)–(g) correspond to those in

Figs. 2 and 3.

Thus, [ka] of the present interest is evaluated as

Zlo = [ka] = 1.84/(1+ A), (16)

and the radius r. becomes

re = 1.84 a/[ka].

Consequently, we can obtain for an arbitrary

the degenerate eigenvalue [ka]

22 = kre = 1.84 ka/[ka].

(17)

value of ka with

(18)

Modal separation and multiplier: A pair curve of a reso-

nant mode in a disk resonator is intrinsically separated under

the biasing magnetic field. This separation is described by an

initial gradient angle al of a tangential straight line passing

a degenerate point ZIO as given in Appendix C. The initial

angle for the mode of n = 1 is given by

0!1 = cot– 1 (210 – 1/210). (19)

The angle al computed from (19) and the theoretical angle

a! obtained from the curves of Fig. 3 are shown in Fig. 5. al

simply varies from 38° to 180° if 210 decreases from 1.84

to zero, while aj varies from 38° to 120°. ci~ is equal to al

at 210 = 0.97.

The ratio of gradient angles is preferred to in definition of

B.

B. = a;/al, (20)

and it is shown in Fig. 5. B. is more than unity in the range

above ZIO = 0.97 and less below it. B. is related to the

cutoff value of (K/p)., as given by

Bo = l/(6/&)c. (21)

Thus, the shifting of the cutoff value on the axis of K/U

is related to the modal separation. B. is also understood to

represent an enhancement of K/V due to gaining more phase

angle than 27r by circumgyrating the peripheral passage.
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Fig. 6. Equivalent resonant modal curves, Part of the ZIO versus ZO diagram
in the left side is transferred from Fig. 2.

Graphing of resonant modal curves: Computation of (12)

is made taking into account the [ka] and l?o relation shown

in Fig. 5. The computed results of the resonant modal curves

are shown in Fig. 6, where (a), (b), and others correspond to

those in Figs. 2 and 3. The resonant modal curves obviously

get more separated if their value of ZO varies from (a) through

(b) to (c) and the cutoff point of (K/LL)C moves down and back

from K,/,u = 1.0 to 0,64. In contrast, the separation for IL

becomes smaller than for Iv and the curves of IL have no

cutoff, running almost straight on a level with its degenerate

point. To ascertain the above graphing, we need some evidence

to rely on.

IV. EXPERIMENTS AND DISCUSSIONS

The TDC resonator used in experiment had such specifica-

tions that the radius of a disk was a = 10 mm, its thickness was

2.5 mm, scraped depth was 1.0 mm, saturation magnetization

of AIYIG ferrite 47riVl, = 950 Gauss. and its permittivity

was e. = 14.5. Since the radius r. was 10.4 mm, which was

less than 11.55 mm for a resonator with nothing scraped, the

resonator of the present concern belonged to the double-value

region near Z. = 1.84. Resonators having a narrow stripline

for light coupling and a wide stripline for tight coupling. with

various center conductors, were experimented.

A lightly coupled resonator was made of a center conductor

of type 1 and coupled by use of the narrow stripline of width

W = 4 mm. The resonant frequency curves measured in the

above resonance were found to be the same narrowly separated

pair as seen in a mode chart in [2, Fig. 7]. It is considered to

be a pair of IL.

In the tightly coupled cases, the resonators, at first, had

only common circular center conductors (type 2), so that three

ferrite disks partially protruded out of the center conductor,

and later had such protruded portions backed with conductors

besides the circular center parts (type 3). The type-2 conductor

‘c
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)00 o
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00
00 0°

00
:0 0

p

&5 (above-resonance)
o

1 1 , 1

0 0.5 1.0 1.5 2.0 2.5

Biasing magnetic field (kG)
Fig. 7. Measured mode chart of tightly coupled resonator with a type-2
center conductor of diameter 2 re = 33 mm. Coupled stripline width W’ =

11.2 mm.

had the center conductor of 2re = 33 mm and coupled

striplines of width W = 11.2 mm. An obtained mode chart

is shown in Fig. 7. Resonant frequency curves of n = 1

were distinguished by two pairs of 1U and lL in the above

and below resonance. In the above resonance, the lL curves

showed the feature to lie between two curves of 1U in the

biasing magnetic field near 1.5-kilo Gauss and a tendency

to depart from 1U as the magnetic field increased. This

observation corresponds to the relationships of 1U and IL,

which are respectively marked by (e) and (f) in Fig. 6.

Further experiments were carried out using larger center

conductors of types 2 and 3. One typical mode chart measured

with a type-3 conductor is shown in Fig. 8. Two pairs of res-

onant frequency curves of 1U and lL are narrowly separated

and decisively departed from each other.

A resonant frequency at a degenerate point, named degen-

erate resonant frequency (DRF), is estimated by extrapolation

at the extremity of biasing magnetic field. DRF’s of 1U and

lL in the above and below resonance for all coupling cases

and conductor types are plotted in Fig. 9. Those of the lightly

coupled case are plotted at %. = 19 mm since the type-1

conductor has the inscribed circle of r. = 9.5 mm, while

those with the type-2 and 3 conductors for such as shown

in Fig. 7 are plotted at 2r, = 33 mm, though the DRF’s of
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TABLE I

THEORETICAL DtAMETERS OF DISK ECXrtVALE~S

No. Z. [ka]lU [ka]lL Mean Value
i

Diameter 2re (units: mm)

for a = X); for a = 18

1 1.90 1.77 0.13 0.95 38.7 34.9

2 2.00 1.63 0.37 1.00 36.8 33.1

3 2.50 1.33 0.75 1.04 35.5 31.8

0

(below-resonance)
Oe

o
00

00
0Ooo

0 (above-resonance)
o

0 0.5 1.0 1.5 2.0 2.5

Biasing magnetic field (kG)
Fig. 8. Measured mode chart of tightly coupled resonator with a type-3

center conductor of 2re = 36.5 mm. Coupled stripline width: W = 11.2
mm.

the type-2 conductor are slightly higher. When the conductor

diameter exceeds 2r. = 35 mm, DRF’s of lU and lL for such

performance as shown in Fig. 8 are found almost unchanged.

Thus, the existence of the double resonant modes of lU and

lL as shown in Figs. 7–9 verifies the theoretical prediction

of the two modes. Regarding the double resonant modes of

lU and lL, there is an adequate center conductor radius to

consolidate them. A disk equivalent to this end is calculated

from the mean value of two degenerate eigenvalues for lU

and lL. Using (17), one can calculate diameters for some disk

equivalents as follows.

Comparing the diameters experimentally examined as

shown in Fig. 9 and those calculated as given in Table I,

1,0

+ for type 1 conductors
o for type 2 conductors
A for type 3 conductors

t
lUUQO

I
‘Lo

(Below-resonan;eLreglon)

(Above-resonance region)

Typel conductor
(thin line)

r

Type 3 conductor
(thick broken)

10 20 30 40

Diameter 2re (mm)

Fig. 9. Relationship of degenerate resonant frequencies of 11’ and IL
against disk diameters of various center conductors in the above- and
below-resonance regions.

we find that the experimental diameter 2re = 33 mm is

shorter than any one for a = 20 mm. If we assume a = 18

mm, we have 2r. = 33.1 mm for 20 = 2.00, which agrees

with the experimental diameter noted above.

Qualitative reasoning about the diametric discrepancy is

sought from the view point of the fringing field effect [6]–[8].

It is actually unavoidable that when a uniform biasing mag-

netic field is applied, the internal magnetic field is not wholly

uniform in the ferrite disk and becomes oblique in the fringe

of the disk. Accordingly, inhomogeneity of dispersive and

dissipative components of the tensor magnetic permeability is

brought about in the fringe in the above and below resonance

regions [8], [9]. The resonance condition of the magnetic

wall and the loss factor may be seriously affected. Thus, the

boundary surface is physically modified to move back inside

the disk, so that the diameter and the scraped portion are in

effect reduced. The diameter reduction from a = 20 to 18

mm results in increasing 20 and correspondingly brings two

degenerate eigenvalues closer in the ZIO versus 20 diagram.

Thus, the calculated diameter of the disk equivalent supports

the above reasoning.

The dispersive and dissipative components inhomoge-

neously emerging in the fringe of the disk not only shift

the boundary surface of the magnetic wall, but also affect

the Q factor of the resonator and its impedance matching,

so that measurement of resonant frequency is seriously

influenced. Missing resonant frequencies seen in a mode
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chart are considered mostly caused by low SN ratio, due to

the dissipation in the fringe in addition to the inhomogeneous

dispersive component.

V. CONCLUSION

The boundary value problem of the TDC resonator and the

eigenvalue characteristics are treated with stress on the lowest-

order mode. As for the Z1O versus ZO diagram, there are

single- and double-value regions, part of which is phenomeno-

logically examined using wave passages circumgyrating in the

three ferrite disks in the resonator. As for the 21 versus K/p

diagram, to dissolve the discrepancy between the theoretically

computed curves and related resonant frequency curves drawn

in the mode chart, an equivalent circular resonant mode is

contrived that is definitely to retain one degenerate eigenvalue.

The TDC resonators with various center conductors were

experimented and adequate center conductors were found

necessary to consolidate the equivalent resonant mode.

It is finally noted that the resonant mode in the TDC

resonator has potentiality to display larger modal separation

and an enhancement effect of the anisotropic splitting factor

due to such TDC structure. Application of a multidisk-coupled

structure has been undertaken to extend performances of such

nonreciprocal devices as isolator and circulator in VHF and

EHF and to further realize such devices in the near infrared

region.

VI. APPENDIX A

TRANSFORMATION OF DERIVATIVESa/~W AND ~/w 80

Transformation of the derivatives can be achieved according

to the theory of differential geometry. One can assume the

functions w = f’~(Z, #), O = ~*(Z, ~), Z = ~~(w, 0),

and @ = ~4(w, O) along the constant lines of w, 6, Z,

and ~, referring to [2, ( l)–(6)]. The issue can be restricted

within two infinitesimal coordinates systems (dw, w W) and

(dZ, Zdq$), which are mutually dependent on the direction

cosines (Al, L1 ) and (Jz, W2) between the two coordinates

systems. They are given by

1 82 1 (9W
Al=—— = ——,

hl ~W g~ (32

hl, h~. gl. and ga in (Al) are

“m

1 az 1 W(M

~l=GwtW=gl 32’

1 28$$ 1 W89

@= Gwt19 ‘g2zaq5’
(Al)

the scale factors given by

,1=&)2+(g)2,

‘2=s’r’(a2+(%)2
g={($)’+($)’, ,A2)

and they must satisfy the relations

Now, let f be an arbitrary function of w, 0, Z, and $, and

the derivatives are calculated as

All terms in the right side in (Al) and (A2) are calculated from

the above-given functions ~1, fz, f3, and f4. One can obtain

aw 13z WM’ az
—= COS?JZG,
82

—=–sin~. —
82 Wm ‘

t?w 28$ Wm

Zqb
—=sin@=—

dw ‘
—=cos@=
zd~

~. (A5)

Substituting (A5)

the scale factors hl

direction cosines

into (A 1) and (A2), one finds that as for

=hz=land gl=gz=land for the

= sin$,

V1 = –sin@, W2 = Cos~. (A6)

Consequently (A4) is rewritten as

af af . af

L3w = co% + ‘1n@zi3(j’
af af

%$” (A’)
— = –sin@Z +cos~—
Wdo

Transformation of magnetic field components HP and H6

into Hr and Ho is made according to the relation

HP = cos $HT – sin ~H4, Ho = sin $HT + cos ~H4.

(A8]

VII. APPENDIX B

MODAL SEPARATION OF THE 7~-TH

ORDER MODE AT THE DEGENERATE POINT

Resonant modal curves of the n-th order mode are computed

from the characteristic equation

J~(zn)+ ;; J.(z.) = o. (Bl)

The resonant modal curves drawn in the Z. versus K/U

diagram is approximated by a tangential straight line passing
the degenerate point Zno with the gradient angle an. The

degenerate point is given by the lowest root of

J~(zno)= o. (B2)

Substituting into (B 1) the approximate linear formulae of the

Bessel function of the n-th order and its derivative which are

given by Jn(Z~) = Jn(Z~O) + J~(ZnO)AZn and J~(Zn) =
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J~ (Zmo) + .J~(Z. O)AZ. regarding Z. = ZnO + AZ., and

taking the linear terms in the Taylor expansions of (B 1), one

can obtain for the gradient of the tangential line

dzn/d(K/#)= –
n

ZnO[l – (n/ZnO)2] “
(B3)

From (B3) one can obtain the gradient angle a.
. .

[1]

[2]

[3]

[4]

[5]

[61

–1

[

n
an = tan

1Zmo{l – (n/ZmO)2} “
(B4)
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